Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Context.Small planets transiting bright nearby stars are essential to our understanding of the formation and evolution of exoplanetary systems. However, few constitute prime targets for atmospheric characterization, and even fewer are part of multiple star systems. Aims.This work aims to validate TOI-4336 A b, a sub-Neptune-sized exoplanet candidate identified by the TESS space-based transit survey around a nearby M dwarf. Methods.We validated the planetary nature of TOI-4336 A b through the global analysis of TESS and follow-up multi-band high-precision photometric data from ground-based telescopes, medium- and high-resolution spectroscopy of the host star, high-resolution speckle imaging, and archival images. Results.The newly discovered exoplanet TOI-4336 A b has a radius of 2.1 ± 0.1R⊕. Its host star is an M3.5-dwarf star with a mass of 0.33 ± 0.01M⊙and a radius of 0.33 ± 0.02R⊙, and is a member of a hierarchical triple M-dwarf system 22 pc away from the Sun. The planet’s orbital period of 16.3 days places it at the inner edge of the habitable zone of its host star, which is the brightest of the inner binary pair. The parameters of the system make TOI-4336 A b an extremely promising target for the detailed atmospheric characterization of a temperate sub-Neptune by transit transmission spectroscopy with JWST.more » « less
-
We report the discovery by the TESS mission of a super-Earth on a 4.8-days orbit around an inactive M4.5 dwarf (TOI-1680), validated by ground-based facilities. The host star is located 37.14 pc away, with a radius of 0.2100 ± 0.0064R⊙, mass of 0.1800 ± 0.0044M⊙, and an effective temperature of 3211 ±100 K. We validated and characterized the planet using TESS data, ground-based multi-wavelength photometry from TRAPPIST, SPECULOOS, and LCO, as well as high-resolution AO observations from Keck/NIRC2 andShane.Our analyses have determined the following parameters for the planet: a radius of 1.466−0.049+0.063R⊕and an equilibrium temperature of 404 ± 14 K, assuming no albedo and perfect heat redistribution. Assuming a mass based on mass-radius relations, this planet is a promising target for atmospheric characterization with theJames WebbSpace Telescope (JWST).more » « less
-
TOI-2015 is a known exoplanetary system around an M4 dwarf star, consisting of a transiting sub-Neptune planet in a 3.35-day orbital period, TOI-2015 b, accompanied by a non-transiting companion, TOI-2015 c. High-precision radial-velocity measurements were taken with the MAROON-X spectrograph, and high-precision photometric data were collected, primarily using the SPECULOOS, MUSCAT, TRAPPIST and LCOGT networks. We collected 63 transit light curves and 49 different transit epochs for TOI-2015 b. We recharacterized the target star by combining optical spectra obtained by the MAROON-X, Shane/KAST and IRTF/SpeX spectrographs, Bayesian model averaging (BMA) and spectral energy distribution (SED) analysis. The TOI-2015 host star is aK= 10.3 mag M4-type dwarf with a subsolar metallicity of [Fe/H] = −0.31 ± 0.16, and an effective temperature ofTeff≈ 3200 K. Our photodynamical analysis of the system strongly favors the 5:3 mean-motion resonance and in this scenario the planet b (TOI-2015 b) has an orbital period ofPb= 3.34 days, a mass ofMp= 9.02-0.36+0.32M⊕, and a radius ofRp= 3.309-0.011+0.013R⊕, resulting in a density ofρp= 0.25 ± 0.01ρ⊕= 1.40 ± 0.06 g cm−3; this is indicative of a Neptune-like composition. Its transits exhibit large (> 1 hr) timing variations characteristic of an outer perturber in the system. We performed a global analysis of the high-resolution radial-velocity measurements, the photometric data, and the TTVs, and inferred that TOI-2015 hosts a second planet, TOI-2015 c, in a non-transiting configuration. Our analysis places it near a 5:3 resonance with an orbital period ofPc= 5.583 days and a mass ofMp= 8.91-0.40+0.38M⊕. The dynamical configuration of TOI-2015 b and TOI-2015 c can be used to constrain the system’s planetary formation and migration history. Based on the mass-radius composition models, TOI-2015 b is a water-rich or rocky planet with a hydrogen-helium envelope. Moreover, TOI-2015 b has a high transmission-spectroscopic metric (TSM=149), making it a favorable target for future transmission spectroscopic observations with theJWSTto constrain the atmospheric composition of the planet. Such observations would also help to break the degeneracies in theoretical models of the planet’s interior structure.more » « lessFree, publicly-accessible full text available March 1, 2026
-
We present the discovery and validation of two TESS exoplanets orbiting nearby M dwarfs: TOI-2084 b, and TOI-4184b. We characterized the host stars by combining spectra fromShane/Kast andMagellan/FIRE, spectral energy distribution analysis, and stellar evolutionary models. In addition, we used Gemini-South/Zorro & -North/Alopeke high-resolution imaging, archival science images, and statistical validation packages to support the planetary interpretation. We performed a global analysis of multi-colour photometric data from TESS and ground-based facilities in order to derive the stellar and planetary physical parameters for each system. We find that TOI-2084 band TOI-4184 bare sub-Neptune-sized planets with radii ofRp= 2.47 ± 0.13R⊕andRp= 2.43 ± 0.21R⊕, respectively. TOI-2084 b completes an orbit around its host star every 6.08 days, has an equilibrium temperature ofTeq= 527 ± 8 K and an irradiation ofSp= 12.8 ± 0.8S⊕. Its host star is a dwarf of spectral M2.0 ± 0.5 at a distance of 114 pc with an effective temperature ofTeff= 3550 ± 50 K, and has a wide, co-moving M8 companion at a projected separation of 1400 au. TOI-4184 b orbits around an M5.0 ± 0.5 type dwarf star (Kmag= 11.87) each 4.9 days, and has an equilibrium temperature ofTeq= 412 ± 8 K and an irradiation ofSp= 4.8 ± 0.4S⊕. TOI-4184 is a metal poor star ([Fe/H] = −0.27 ± 0.09 dex) at a distance of 69 pc with an effective temperature ofTeff= 3225 ± 75 K. Both planets are located at the edge of the sub-Jovian desert in the radius-period plane. The combination of the small size and the large infrared brightness of their host stars make these new planets promising targets for future atmospheric exploration with JWST.more » « less
-
We validate the Transiting Exoplanet Survey Satellite (TESS) object of interest TOI-2266.01 (TIC 8348911) as a small transiting planet (most likely a super-Earth) orbiting a faint M5 dwarf (V= 16.54) on a 2.33 d orbit. The validation is based on an approach where multicolour transit light curves are used to robustly estimate the upper limit of the transiting object's radius. Our analysis uses SPOC-pipeline TESS light curves from Sectors 24, 25, 51, and 52, simultaneous multicolour transit photometry observed with MuSCAT2, MuSCAT3' and HiPERCAM, and additional transit photometry observed with the LCOGT telescopes. TOI-2266 b is found to be a planet with a radius of 1.54 ± 0.09R⊕, which locates it at the edge of the transition zone between rocky planets, water-rich planets, and sub-Neptunes (the so-called M dwarf radius valley). The planet is amenable to ground-based radial velocity mass measurement with red-sensitive spectrographs installed in large telescopes, such as MAROON-X and Keck Planet Finder (KPF), which makes it a valuable addition to a relatively small population of planets that can be used to probe the physics of the transition zone. Further, the planet's orbital period of 2.33 days places it inside a ‘keystone planet’ wedge in the period-radius plane where competing planet formation scenarios make conflicting predictions on how the radius valley depends on the orbital period. This makes the planet also a welcome addition to the small population of planets that can be used to test small-planet formation scenarios around M dwarfs.more » « less
An official website of the United States government
